Source code for diffsptk.modules.decimate
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import torch
from torch import nn
[docs]
class Decimation(nn.Module):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/decimate.html>`_
for details.
Parameters
----------
period : int >= 1
Decimation period, :math:`P`.
start : int >= 0
Start point, :math:`S`.
dim : int
Dimension along which to shift the tensors.
"""
def __init__(self, period, start=0, dim=-1):
super().__init__()
assert 1 <= period
assert 0 <= start
self.period = period
self.start = start
self.dim = dim
[docs]
def forward(self, x):
"""Decimate signal.
Parameters
----------
x : Tensor [shape=(..., T, ...)]
Signal.
Returns
-------
out : Tensor [shape=(..., T/P-S, ...)]
Decimated signal.
Examples
--------
>>> x = diffsptk.ramp(9)
>>> decimate = diffsptk.Decimation(3, start=1)
>>> y = decimate(x)
>>> y
tensor([1., 4., 7.])
"""
return self._forward(x, self.period, self.start, self.dim)
@staticmethod
def _forward(x, period, start, dim):
T = x.shape[dim]
indices = torch.arange(start, T, period, dtype=torch.long, device=x.device)
y = torch.index_select(x, dim, indices)
return y
_func = _forward