Source code for diffsptk.modules.ipnorm

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
from torch import nn

from ..misc.utils import check_size


[docs] class MelCepstrumInversePowerNormalization(nn.Module): """See `this page <https://sp-nitech.github.io/sptk/latest/main/ipnorm.html>`_ for details. Parameters ---------- cep_order : int >= 0 Order of cepstrum, :math:`M`. """ def __init__(self, cep_order): super().__init__() self.cep_order = cep_order
[docs] def forward(self, y): """Perform cepstrum inverse power normalization. Parameters ---------- y : Tensor [shape=(..., M+2)] Power-normalized cepstrum. Returns ------- out : Tensor [shape=(..., M+1)] Output cepstrum. Examples -------- >>> x = diffsptk.ramp(1, 4) >>> pnorm = diffsptk.MelCepstrumPowerNormalization(3, alpha=0.1) >>> ipnorm = diffsptk.MelCepstrumInversePowerNormalization(3) >>> y = ipnorm(pnorm(x)) >>> y tensor([1., 2., 3., 4.]) """ check_size(y.size(-1), self.cep_order + 2, "dimension of cepstrum") return self._forward(y)
@staticmethod def _forward(y): P, y1, y2 = torch.split(y, [1, 1, y.size(-1) - 2], dim=-1) x = torch.cat((0.5 * P + y1, y2), dim=-1) return x _func = _forward