Source code for diffsptk.modules.entropy
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import math
import torch
from torch import nn
[docs]
class Entropy(nn.Module):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/entropy.html>`_
for details.
Parameters
----------
out_format : ['bit', 'nat', 'dit']
Unit of entropy.
"""
def __init__(self, out_format="nat"):
super().__init__()
self.const = self._precompute(out_format)
[docs]
def forward(self, p):
"""Compute entropy from probability sequence.
Parameters
----------
p : Tensor [shape=(..., N)]
Probability sequence.
Returns
-------
out : Tensor [shape=(...,)]
Entropy.
Examples
--------
>>> p = diffsptk.step(3) / 4
>>> p
tensor([0.2500, 0.2500, 0.2500, 0.2500])
>>> entropy = diffsptk.Entropy("bit")
>>> h = entropy(p)
>>> h
tensor(2.)
"""
return self._forward(p, self.const)
@staticmethod
def _forward(p, const):
h = torch.special.entr(p).sum(-1) * const
return h
@staticmethod
def _func(p, out_format):
const = Entropy._precompute(out_format)
return Entropy._forward(p, const)
@staticmethod
def _precompute(out_format):
if out_format in (0, "bit"):
return math.log2(math.e)
elif out_format in (1, "nat"):
return 1
elif out_format in (2, "dit"):
return math.log10(math.e)
raise ValueError(f"out_format {out_format} is not supported.")