Source code for diffsptk.modules.histogram

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
from torch import nn

from ..misc.utils import to


[docs] class Histogram(nn.Module): """See `this page <https://sp-nitech.github.io/sptk/latest/main/histogram.html>`_ for details. Parameters ---------- n_bin : int >= 1 Number of bins, :math:`K`. lower_bound : float < U Lower bound of the histogram, :math:`L`. upper_bound : float > L Upper bound of the histogram, :math:`U`. norm : bool If True, normalize the histogram. softness : float > 0 A smoothing parameter. The smaller value makes the output closer to the true histogram, but the gradient vanishes. References ---------- .. [1] M. Avi-Aharon et al., "DeepHist: Differentiable joint and color histogram layers for image-to-image translation," *arXiv preprint arXiv:2005.03995*, 2020. """ def __init__( self, n_bin=10, lower_bound=0, upper_bound=1, norm=False, softness=1e-3 ): super().__init__() assert 1 <= n_bin assert lower_bound < upper_bound assert 0 < softness self.norm = norm self.softness = softness centers = self._precompute(n_bin, lower_bound, upper_bound) self.register_buffer("centers", centers)
[docs] def forward(self, x): """Compute histogram. Parameters ---------- x : Tensor [shape=(..., T)] Input data. Returns ------- out : Tensor [shape=(..., K)] Histogram. Examples -------- >>> x = diffsptk.ramp(9) >>> histogram = diffsptk.Histogram(n_bin=4, lower_bound=-0.1, upper_bound=9.1) >>> h = histogram(x) >>> h tensor([3., 2., 2., 3.]) """ return self._forward(x, self.norm, self.softness, self.centers)
@staticmethod def _forward(x, norm, softness, centers): y = x.unsqueeze(-2) - centers.unsqueeze(-1) # (..., K, T) g = 0.5 * (centers[1] - centers[0]) h = torch.sigmoid((y + g) / softness) - torch.sigmoid((y - g) / softness) h = h.sum(-1) if norm: h /= h.sum(-1, keepdim=True) return h @staticmethod def _func(x, n_bin, lower_bound, upper_bound, norm, softness): centers = Histogram._precompute( n_bin, lower_bound, upper_bound, dtype=x.dtype, device=x.device ) return Histogram._forward(x, norm, softness, centers) @staticmethod def _precompute(n_bin, lower_bound, upper_bound, dtype=None, device=None): width = (upper_bound - lower_bound) / n_bin bias = lower_bound + 0.5 * width centers = torch.arange(n_bin, dtype=torch.double, device=device) * width + bias return to(centers, dtype=dtype)