Source code for diffsptk.modules.c2acr
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import torch
from torch import nn
from ..misc.utils import check_size
[docs]
class CepstrumToAutocorrelation(nn.Module):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/c2acr.html>`_
for details.
Parameters
----------
cep_order : int >= 0
Order of cepstrum, :math:`M`.
acr_order : int >= 0
Order of autocorrelation, :math:`N`.
n_fft : int >> N
Number of FFT bins. Accurate conversion requires the large value.
"""
def __init__(self, cep_order, acr_order, n_fft=512):
super().__init__()
assert 0 <= cep_order
assert 0 <= acr_order
assert max(cep_order + 1, acr_order + 1) <= n_fft
self.cep_order = cep_order
self.acr_order = acr_order
self.n_fft = n_fft
[docs]
def forward(self, c):
"""Convert cepstrum to autocorrelation.
Parameters
----------
c : Tensor [shape=(..., M+1)]
Cepstral coefficients.
Returns
-------
out : Tensor [shape=(..., N+1)]
Autocorrelation.
Examples
--------
>>> c = diffsptk.nrand(4)
>>> c
tensor([-0.1751, 0.1950, -0.3211, 0.3523, -0.5453])
>>> c2acr = diffsptk.CepstrumToAutocorrelation(4, 4, 16)
>>> r = c2acr(c)
>>> r
tensor([ 1.0672, -0.0485, -0.1564, 0.2666, -0.4551])
"""
check_size(c.size(-1), self.cep_order + 1, "dimension of cepstrum")
return self._forward(c, self.acr_order, self.n_fft)
@staticmethod
def _forward(c, acr_order, n_fft):
x = torch.fft.rfft(c, n=n_fft).real
x = torch.exp(2 * x)
r = torch.fft.hfft(x, norm="forward")[..., : acr_order + 1]
return r
_func = _forward