fbank#
- class diffsptk.MelFilterBankAnalysis(n_channel, fft_length, sample_rate, f_min=0, f_max=None, floor=1e-05, use_power=False, out_format='y')[source]#
- See this page for details. - Parameters:
- n_channelint >= 1
- Number of mel-filter banks, \(C\). 
- fft_lengthint >= 2
- Number of FFT bins, \(L\). 
- sample_rateint >= 1
- Sample rate in Hz. 
- f_minfloat >= 0
- Minimum frequency in Hz. 
- f_maxfloat <= sample_rate // 2
- Maximum frequency in Hz. 
- floorfloat > 0
- Minimum mel-filter bank output in linear scale. 
- use_powerbool
- If True, use power spectrum instead of amplitude spectrum. 
- out_format[‘y’, ‘yE’, ‘y,E’]
- y is mel-filber bank outpus and E is energy. If this is yE, the two output tensors are concatenated and return the tensor instead of the tuple. 
 
 - References [1]- Young et al., “The HTK Book,” Cambridge University Press, 2006. 
 - forward(x)[source]#
- Apply mel-filter banks to STFT. - Parameters:
- xTensor [shape=(…, L/2+1)]
- Power spectrum. 
 
- Returns:
- yTensor [shape=(…, C)]
- Mel-filter bank output. 
- ETensor [shape=(…, 1)] (optional)
- Energy. 
 
 - Examples - >>> x = diffsptk.ramp(19) >>> stft = diffsptk.STFT(frame_length=10, frame_period=10, fft_length=32) >>> fbank = diffsptk.MelFilterBankAnalysis(4, 32, 8000) >>> y = fbank(stft(x)) >>> y tensor([[0.1214, 0.4825, 0.6072, 0.3589], [3.3640, 3.4518, 2.7717, 0.5088]]) 
 
- diffsptk.functional.fbank(x, n_channel, sample_rate, f_min=0, f_max=None, floor=1e-05, out_format='y')[source]#
- Apply mel-filter banks to STFT. - Parameters:
- xTensor [shape=(…, L/2+1)]
- Power spectrum. 
- n_channelint >= 1
- Number of mel-filter banks, \(C\). 
- sample_rateint >= 1
- Sample rate in Hz. 
- f_minfloat >= 0
- Minimum frequency in Hz. 
- f_maxfloat <= sample_rate // 2
- Maximum frequency in Hz. 
- floorfloat > 0
- Minimum mel-filter bank output in linear scale. 
- out_format[‘y’, ‘yE’, ‘y,E’]
- y is mel-filber bank outpus and E is energy. If this is yE, the two output tensors are concatenated and return the tensor instead of the tuple. 
 
- Returns:
- yTensor [shape=(…, C)]
- Mel-filter bank output. 
- ETensor [shape=(…, 1)] (optional)
- Energy.