Source code for diffsptk.modules.ulaw
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import math
import torch
import torch.nn as nn
[docs]
class MuLawCompression(nn.Module):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/ulaw.html>`_
for details.
Parameters
----------
abs_max : float > 0
Absolute maximum value of input.
mu : int >= 1
Compression factor, :math:`\\mu`.
"""
def __init__(self, abs_max=1, mu=255):
super(MuLawCompression, self).__init__()
assert 0 < abs_max
assert 1 <= mu
self.abs_max = abs_max
self.mu = mu
self.const = self._precompute(self.abs_max, self.mu)
[docs]
def forward(self, x):
"""Compress waveform by :math:`\\mu`-law algorithm.
Parameters
----------
x : Tensor [shape=(...,)]
Waveform.
Returns
-------
out : Tensor [shape=(...,)]
Compressed waveform.
Examples
--------
>>> x = diffsptk.ramp(4)
>>> ulaw = diffsptk.MuLawCompression(4)
>>> y = ulaw(x)
>>> y
tensor([0.0000, 3.0084, 3.5028, 3.7934, 4.0000])
"""
return self._forward(x, self.abs_max, self.mu, self.const)
@staticmethod
def _forward(x, abs_max, mu, const):
x_abs = x.abs() / abs_max
y = const * torch.sign(x) * torch.log1p(mu * x_abs)
return y
@staticmethod
def _func(x, abs_max, mu):
const = MuLawCompression._precompute(abs_max, mu)
return MuLawCompression._forward(x, abs_max, mu, const)
@staticmethod
def _precompute(abs_max, mu):
return abs_max / math.log1p(mu)