Source code for diffsptk.modules.par2lpc
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import torch.nn as nn
from ..misc.utils import check_size
from ..misc.utils import get_gamma
[docs]
class ParcorCoefficientsToLinearPredictiveCoefficients(nn.Module):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/par2lpc.html>`_
for details.
Parameters
----------
lpc_order : int >= 0
Order of LPC, :math:`M`.
gamma : float in [-1, 1]
Gamma, :math:`\\gamma`.
c : int >= 1 or None
Number of stages.
"""
def __init__(self, lpc_order, gamma=1, c=None):
super(ParcorCoefficientsToLinearPredictiveCoefficients, self).__init__()
assert 0 <= lpc_order
assert abs(gamma) <= 1
self.lpc_order = lpc_order
self.gamma = self._precompute(gamma, c)
[docs]
def forward(self, k):
"""Convert PARCOR to LPC.
Parameters
----------
k : Tensor [shape=(..., M+1)]
PARCOR coefficients.
Returns
-------
out : Tensor [shape=(..., M+1)]
LPC coefficients.
Examples
--------
>>> x = diffsptk.nrand(4)
>>> x
tensor([ 0.7829, -0.2028, 1.6912, 0.1454, 0.4861])
>>> lpc = diffsptk.LPC(3, 5)
>>> a = lpc(x)
>>> a
tensor([ 1.6036, 0.0573, -0.5615, -0.0638])
>>> lpc2par = diffsptk.LinearPredictiveCoefficientsToParcorCoefficients(3)
>>> par2lpc = diffsptk.ParcorCoefficientsToLinearPredictiveCoefficients(3)
>>> a2 = par2lpc(lpc2par(a))
>>> a2
tensor([ 1.6036, 0.0573, -0.5615, -0.0638])
"""
check_size(k.size(-1), self.lpc_order + 1, "dimension of PARCOR")
return self._forward(k, self.gamma)
@staticmethod
def _forward(k, gamma):
a = k / gamma
for m in range(2, k.size(-1)):
km = k[..., m : m + 1]
am = a[..., 1:m]
a[..., 1:m] = am + km * am.flip(-1)
return a
@staticmethod
def _func(k, gamma=1, c=None):
gamma = ParcorCoefficientsToLinearPredictiveCoefficients._precompute(gamma, c)
return ParcorCoefficientsToLinearPredictiveCoefficients._forward(k, gamma)
@staticmethod
def _precompute(gamma, c):
return get_gamma(gamma, c)