Source code for diffsptk.modules.dct

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
import torch.nn as nn

from ..misc.utils import check_size
from ..misc.utils import to


[docs] class DiscreteCosineTransform(nn.Module): """See `this page <https://sp-nitech.github.io/sptk/latest/main/dct.html>`_ for details. Parameters ---------- dct_length : int >= 1 DCT length, :math:`L`. """ def __init__(self, dct_length): super(DiscreteCosineTransform, self).__init__() assert 1 <= dct_length self.dct_length = dct_length self.register_buffer("W", self._precompute(self.dct_length))
[docs] def forward(self, x): """Apply DCT to input. Parameters ---------- x : Tensor [shape=(..., L)] Input. Returns ------- out : Tensor [shape=(..., L)] DCT output. Examples -------- >>> x = diffsptk.ramp(3) >>> dct = diffsptk.DCT(4) >>> y = dct(x) >>> y tensor([ 3.0000, -2.2304, 0.0000, -0.1585]) """ check_size(x.size(-1), self.dct_length, "dimension of input") return self._forward(x, self.W)
@staticmethod def _forward(x, W): return torch.matmul(x, W) @staticmethod def _func(x): W = DiscreteCosineTransform._precompute( x.size(-1), dtype=x.dtype, device=x.device ) return DiscreteCosineTransform._forward(x, W) @staticmethod def _precompute(length, dtype=None, device=None): L = length k = torch.arange(L, dtype=torch.double, device=device) n = (k + 0.5) * (torch.pi / L) z = torch.sqrt(torch.clip(1 + k, 1, 2) / L) W = z.unsqueeze(0) * torch.cos(k.unsqueeze(0) * n.unsqueeze(1)) return to(W, dtype=dtype)