Source code for diffsptk.modules.c2ndps
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import torch
import torch.nn as nn
from ..misc.utils import check_size
from ..misc.utils import to
[docs]
class CepstrumToNegativeDerivativeOfPhaseSpectrum(nn.Module):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/c2ndps.html>`_
for details.
Parameters
----------
cep_order : int >= 0
Order of cepstrum, :math:`M`.
fft_length : int >= 2
Number of FFT bins, :math:`L`.
"""
def __init__(self, cep_order, fft_length):
super(CepstrumToNegativeDerivativeOfPhaseSpectrum, self).__init__()
assert 0 <= cep_order
assert max(1, cep_order) <= fft_length // 2
self.cep_order = cep_order
self.fft_length = fft_length
ramp = self._precompute(self.cep_order, self.fft_length)
self.register_buffer("ramp", ramp)
[docs]
def forward(self, c):
"""Convert cepstrum to NDPS.
Parameters
----------
c : Tensor [shape=(..., M+1)]
Cepstrum.
Returns
-------
out : Tensor [shape=(..., L/2+1)]
NDPS.
Examples
--------
>>> c = diffsptk.ramp(4)
>>> c2ndps = diffsptk.CepstrumToNegativeDerivativeOfPhaseSpectrum(4, 8)
>>> n = c2ndps(c)
>>> n
tensor([ 30.0000, -21.6569, 12.0000, -10.3431, 10.0000])
"""
check_size(c.size(-1), self.cep_order + 1, "dimension of cepstrum")
return self._forward(c, self.fft_length, self.ramp)
@staticmethod
def _forward(c, fft_length, ramp):
v = c * ramp
n = torch.fft.hfft(v, n=fft_length)[..., : fft_length // 2 + 1]
return n
@staticmethod
def _func(c, fft_length):
ramp = CepstrumToNegativeDerivativeOfPhaseSpectrum._precompute(
c.size(-1) - 1, fft_length, dtype=c.dtype, device=c.device
)
return CepstrumToNegativeDerivativeOfPhaseSpectrum._forward(c, fft_length, ramp)
@staticmethod
def _precompute(cep_order, fft_length, dtype=None, device=None):
half_fft_length = fft_length // 2
ramp = torch.arange(cep_order + 1, dtype=torch.double, device=device) * 0.5
if cep_order == half_fft_length:
ramp[-1] *= 2
return to(ramp, dtype=dtype)