signals#
- diffsptk.impulse(order, **kwargs)[source]#
- Generate impulse sequence. - See impulse for details. - Parameters:
- orderint >= 0 [scalar]
- Order of sequence, \(M\). 
- **kwargsadditional keyword arguments
- See torch.eye. 
 
- Returns:
- xTensor [shape=(M+1,)]
- Impulse sequence. 
 
 - Examples - >>> x = diffsptk.impulse(4) >>> x tensor([1., 0., 0., 0., 0.]) 
- diffsptk.step(order, value=1, **kwargs)[source]#
- Generate step sequence. - See step for details. - Parameters:
- orderint >= 0 [scalar]
- Order of sequence, \(M\). 
- valuefloat [scalar]
- Step value. 
- **kwargsadditional keyword arguments
- See torch.full. 
 
- Returns:
- xTensor [shape=(M+1,)]
- Step sequence. 
 
 - Examples - >>> x = diffsptk.step(4, 2) >>> x tensor([2., 2., 2., 2., 2.]) 
- diffsptk.ramp(arg, end=None, step=1, eps=1e-08, **kwargs)[source]#
- Generate ramp sequence. - See ramp for details. - Parameters:
- argfloat [scalar]
- If end is None end value otherwise start value. 
- endfloat [scalar]
- End value. 
- stepfloat != 0 [scalar]
- Slope. 
- epsfloat [scalar]
- A correction value. 
- **kwargsadditional keyword arguments
- See torch.arange. 
 
- Returns:
- xTensor [shape=(?,)]
- Ramp sequence. 
 
 - Examples - >>> x = diffsptk.ramp(4) >>> x tensor([0., 1., 2., 3., 4.]) 
- diffsptk.sin(order, period=None, magnitude=1, **kwargs)[source]#
- Generate sinusoidal sequence. - See sin for details. - Parameters:
- orderint >= 0 [scalar]
- Order of sequence, \(M\). 
- periodfloat > 0 [scalar]
- Period. 
- magnitudefloat [scalar]
- Magnitude. 
- **kwargsadditional keyword arguments
- See torch.arange. 
 
- Returns:
- xTensor [shape=(M+1,)]
- Sinusoidal sequence. 
 
 - Examples - >>> x = diffsptk.sin(4) >>> x tensor([ 0.0000, 0.9511, 0.5878, -0.5878, -0.9511]) 
- diffsptk.train(order, frame_period, norm='power', **kwargs)[source]#
- Generate pulse sequence. - See train for details. - Parameters:
- orderint >= 0 [scalar]
- Order of sequence, \(M\). 
- frame_periodfloat >= 1 [scalar]
- Frame period. 
- norm[‘none’, ‘power’, ‘magnitude’]
- Normalization type. 
- **kwargsadditional keyword arguments
- See torch.zeros. 
 
- Returns:
- xTensor [shape=(M+1,)]
- Pulse sequence. 
 
 - Examples - >>> x = diffsptk.train(5, 2.3) >>> x tensor([1.5166, 0.0000, 0.0000, 1.5166, 0.0000, 1.5166]) 
- diffsptk.nrand(*order, mean=0, stdv=1, var=None, **kwargs)[source]#
- Generate random number sequence. - See nrand for details. - Parameters:
- orderint >= 0 [scalar]
- Order of sequence, \(M\). 
- meanfloat [scalar]
- Mean. 
- stdvfloat >= 0 [scalar]
- Standard deviation. 
- varfloat >= 0 [scalar]
- Variance. 
- **kwargsadditional keyword arguments
- See torch.randn. 
 
- Returns:
- xTensor [shape=(M+1,)]
- Random value sequence. 
 
 - Examples - >>> x = diffsptk.nrand(4) >>> x tensor([-0.8603, 0.6743, -0.9178, 1.5382, -0.2574]) >>> x = diffsptk.nrand(2, 4) >>> x tensor([[-0.2385, -0.0778, -0.0418, -1.6217, 0.1560], [ 1.6646, 0.8429, 0.9357, -0.5123, 0.9571]])