Source code for diffsptk.core.norm0
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import torch
import torch.nn as nn
from ..misc.utils import check_size
[docs]class AllPoleToAllZeroDigitalFilterCoefficients(nn.Module):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/norm0.html>`_
for details.
Parameters
----------
filter_order : int >= 0 [scalar]
Order of filter coefficients, :math:`M`.
"""
def __init__(self, filter_order):
super(AllPoleToAllZeroDigitalFilterCoefficients, self).__init__()
self.filter_order = filter_order
assert 0 <= self.filter_order
[docs] def forward(self, a):
"""Convert all-pole to all-zero filter coefficients vice versa.
Parameters
----------
a : Tensor [shape=(..., M+1)]
All-pole or all-zero filter coefficients.
Returns
-------
b : Tensor [shape=(..., M+1)]
All-zero or all-pole filter coefficients.
Examples
--------
>>> a = diffsptk.ramp(4, 1, -1)
>>> norm0 = diffsptk.AllPoleToAllZeroDigitalFilterCoefficients(3)
>>> b = norm0(a)
>>> b
tensor([0.2500, 0.7500, 0.5000, 0.2500])
"""
check_size(a.size(-1), self.filter_order + 1, "dimension of coefficients")
K, a1 = torch.split(a, [1, self.filter_order], dim=-1)
b0 = torch.reciprocal(K)
b1 = a1 * b0
b = torch.cat((b0, b1), dim=-1)
return b