Source code for diffsptk.core.interpolate
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import torch
import torch.nn as nn
[docs]class Interpolation(nn.Module):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/interpolate.html>`_
for details.
Parameters
----------
period : int >= 1 [scalar]
Interpolation period, :math:`P`.
start : int >= 0 [scalar]
Start point, :math:`S`.
"""
def __init__(self, period, start=0):
super(Interpolation, self).__init__()
self.period = period
self.start = start
assert 1 <= self.period
assert 0 <= self.start
[docs] def forward(self, x, dim=-1):
"""Interpolate signal.
Parameters
----------
x : Tensor [shape=(..., T, ...)]
Signal.
dim : int [scalar]
Dimension along which to interpolate the tensors.
Returns
-------
y : Tensor [shape=(..., TxP+S, ...)]
Interpolated signal.
Examples
--------
>>> x = torch.arange(1, 4)
>>> interpolate = diffsptk.Interpolation(3, start=1)
>>> y = interpolate(x)
>>> y
tensor([0, 1, 0, 0, 2, 0, 0, 3, 0, 0])
"""
T = x.shape[dim] * self.period + self.start
indices = torch.arange(
self.start, T, self.period, dtype=torch.long, device=x.device
)
size = list(x.shape)
size[dim] = T
y = torch.zeros(size, dtype=x.dtype, device=x.device)
y.index_add_(dim, indices, x)
return y