Source code for diffsptk.core.lar2par
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import torch
import torch.nn as nn
from ..misc.utils import check_size
[docs]class LogAreaRatioToParcorCoefficients(nn.Module):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/lar2par.html>`_
for details.
Parameters
----------
par_order : int >= 0 [scalar]
Order of PARCOR, :math:`M`.
"""
def __init__(self, par_order):
super(LogAreaRatioToParcorCoefficients, self).__init__()
self.par_order = par_order
assert 0 <= self.par_order
[docs] def forward(self, A):
"""Convert LAR to PARCOR.
Parameters
----------
A : Tensor [shape=(..., M+1)]
Log area ratio.
Returns
-------
k : Tensor [shape=(..., M+1)]
PARCOR coefficients.
Examples
--------
>>> k = diffsptk.ramp(1, 4) * 0.1
>>> par2lar = diffsptk.ParcorCoefficientsToLogAreaRatio(3)
>>> A = par2lar(k)
>>> A
tensor([0.1000, 0.4055, 0.6190, 0.8473])
"""
check_size(A.size(-1), self.par_order + 1, "dimension of parcor")
K, A1 = torch.split(A, [1, self.par_order], dim=-1)
k = torch.cat((K, torch.tanh(0.5 * A1)), dim=-1)
return k