Source code for diffsptk.core.idct

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
import torch.nn as nn

from ..misc.utils import numpy_to_torch
from .dct import make_dct_matrix


[docs]class InverseDiscreteCosineTransform(nn.Module): """See `this page <https://sp-nitech.github.io/sptk/latest/main/idct.html>`_ for details. Parameters ---------- dct_length : int >= 1 [scalar] DCT length, :math:`L`. """ def __init__(self, dct_length): super(InverseDiscreteCosineTransform, self).__init__() assert 1 <= dct_length W = make_dct_matrix(dct_length) self.register_buffer("W", numpy_to_torch(W.T))
[docs] def forward(self, y): """Apply inverse DCT to input. Parameters ---------- y : Tensor [shape=(..., L)] Input. Returns ------- x : Tensor [shape=(..., L)] Inverse DCT output. Examples -------- >>> x = diffsptk.ramp(3) >>> dct = diffsptk.DCT(4) >>> idct = diffsptk.IDCT(4) >>> x2 = idct(dct(x)) >>> x2 tensor([-4.4703e-08, 1.0000e+00, 2.0000e+00, 3.0000e+00]) """ x = torch.matmul(y, self.W) return x