Source code for diffsptk.core.acorr

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
import torch.nn as nn

from .spec import Spectrum


[docs]class AutocorrelationAnalysis(nn.Module): """See `this page <https://sp-nitech.github.io/sptk/latest/main/acorr.html>`_ for details. Currently, spectrum input is not supported. Parameters ---------- acr_order : int >= 0 [scalar] Order of autocorrelation, :math:`M`. frame_length : int > M [scalar] Frame length, :math:`L`. norm : bool [scalar] If True, normalize autocorrelation. acf : ['none', 'biased', 'unbiased'] Type of autocorrelation function. """ def __init__(self, acr_order, frame_length, norm=False, acf="none"): super(AutocorrelationAnalysis, self).__init__() self.acr_order = acr_order self.norm = norm assert 0 <= self.acr_order assert self.acr_order < frame_length # Make spectrum module. fft_length = frame_length + self.acr_order if fft_length % 2 == 1: fft_length += 1 self.spec = Spectrum(fft_length) # Prepare constants. if acf == "none": const = torch.tensor(1) elif acf == "biased": const = torch.tensor(frame_length) elif acf == "unbiased": const = torch.arange(frame_length, frame_length - self.acr_order - 1, -1) else: raise ValueError("acf {acf} is not supported") self.register_buffer("const", torch.reciprocal(const))
[docs] def forward(self, x): """Estimate autocorrelation of input. Parameters ---------- x : Tensor [shape=(..., L)] Framed waveform. Returns ------- r : Tensor [shape=(..., M+1)] Autocorrelation. Examples -------- >>> x = diffsptk.ramp(4) >>> acorr = diffsptk.AutocorrelationAnalysis(3, 5) >>> r = acorr(x) >>> r tensor([30.0000, 20.0000, 11.0000, 4.0000]) """ X = self.spec(x) r = torch.fft.irfft(X)[..., : self.acr_order + 1] r = r * self.const if self.norm: r = r / r[..., :1] return r