Source code for diffsptk.core.c2acr
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import torch
import torch.nn as nn
[docs]class CepstrumToAutocorrelation(nn.Module):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/c2acr.html>`_
for details.
Parameters
----------
acr_order : int >= 0 [scalar]
Order of autocorrelation, :math:`M_2`.
fft_length : int >= 2 [scalar]
Number of FFT bins, :math:`L`.
"""
def __init__(self, acr_order, fft_length):
super(CepstrumToAutocorrelation, self).__init__()
self.acr_order = acr_order
self.fft_length = fft_length
assert 0 <= self.acr_order
assert 2 <= self.fft_length
assert self.acr_order <= self.fft_length // 2
[docs] def forward(self, c):
"""Convert cepstrum to autocorrelation.
Parameters
----------
c : Tensor [shape=(..., M1+1)]
Cepstrum.
Returns
-------
r : Tensor [shape=(..., M2+1)]
Autocorrelation.
Examples
--------
>>> c = diffsptk.nrand(4)
>>> c
tensor([-0.1751, 0.1950, -0.3211, 0.3523, -0.5453])
>>> c2acr = diffsptk.CepstrumToAutocorrelation(4, 16)
>>> r = c2acr(c)
>>> r
tensor([ 1.0672, -0.0485, -0.1564, 0.2666, -0.4551])
"""
x = torch.fft.rfft(c, n=self.fft_length).real
x = torch.exp(2 * x)
r = torch.fft.hfft(x)[..., : self.acr_order + 1]
r = r / self.fft_length
return r