lbg#
- diffsptk.KMeans#
alias of
LindeBuzoGrayAlgorithm
- class diffsptk.LindeBuzoGrayAlgorithm(order, codebook_size, min_data_per_cluster=1, n_iter=100, eps=1e-05, perturb_factor=1e-05, verbose=False)[source]#
See this page for details. This module is not differentiable.
- orderint >= 0 [scalar]
Order of vector.
- codebook_sizeint >= 1 [scalar]
Target codebook size, must be power of two.
- min_data_per_clusterint >= 1 [scalar]
Minimum number of data points in a cluster.
- n_iterint >= 1 [scalar]
Number of iterations.
- epsfloat >= 0 [scalar]
Convergence threshold.
- perturb_factorfloat > 0 [scalar]
Perturbation factor.
- verbosebool [scalar]
If True, print progress.
- forward(x)[source]#
Design a codebook.
- Parameters:
- xTensor [shape=(…, M+1)]
Input vectors.
- Returns:
- codebookTensor [shape=(K, M+1)]
Codebook.
- distanceTensor [scalar]
Distance.
Examples
>>> x = diffsptk.nrand(10, 0) >>> lbg = diffsptk.KMeans(0, 2) >>> codebook, distance = lbg(x) >>> codebook tensor([[-1.3889], [ 0.6275]]) >>> distance tensor(0.2489)