Source code for diffsptk.core.pca

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
import torch.nn as nn


[docs]class PrincipalComponentAnalysis(nn.Module): """See `this page <https://sp-nitech.github.io/sptk/latest/main/pca.html>`_ for details. Parameters ---------- n_comp : int >= 1 [scalar] Number of principal components, :math:`N`. cov_type : ['sample', 'unbiased', 'correlation'] Type of covariance. """ def __init__(self, n_comp, cov_type="sample"): super(PrincipalComponentAnalysis, self).__init__() self.n_comp = n_comp self.cov_type = cov_type assert 1 <= self.n_comp if cov_type == 0 or cov_type == "sample": self.cov = lambda x: torch.cov(x, correction=0) elif cov_type == 1 or cov_type == "unbiased": self.cov = lambda x: torch.cov(x, correction=1) elif cov_type == 2 or cov_type == "correlation": self.cov = lambda x: torch.corrcoef(x) else: raise ValueError(f"cov_type {cov_type} is not supported")
[docs] def forward(self, x): """Perform PCA. Parameters ---------- x : Tensor [shape=(..., M+1)] Input vectors. Returns ------- e : Tensor [shape=(N,)] Eigenvalues ordered in ascending order. v : Tensor [shape=(M+1, N)] Eigenvectors. m : Tensor [shape=(M+1,)] Mean vector. Examples -------- >>> x = diffsptk.nrand(10, 3) >>> pca = diffsptk.PCA(3) >>> e, _, _ = pca(x) >>> e tensor([0.6240, 1.0342, 1.7350]) """ x = x.reshape(-1, x.size(-1)).T assert self.n_comp + 1 <= x.size(1), "Number of data samples is too small" e, v = torch.linalg.eigh(self.cov(x)) e = e[-self.n_comp :] v = v[:, -self.n_comp :] m = x.mean(1) return e, v, m