Source code for diffsptk.core.dequantize
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import torch
import torch.nn as nn
[docs]class InverseUniformQuantization(nn.Module):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/dequantize.html>`_
for details.
Parameters
----------
abs_max : float > 0 [scalar]
Absolute maximum value of input.
n_bit : int >= 1 [scalar]
Number of quantization bits.
quantizer : ['mid-rise', 'mid-tread']
Quantizer.
"""
def __init__(self, abs_max=1, n_bit=8, quantizer="mid-rise"):
super(InverseUniformQuantization, self).__init__()
self.abs_max = abs_max
self.quantizer = quantizer
assert 0 < self.abs_max
assert 1 <= n_bit
if quantizer == 0 or quantizer == "mid-rise":
self.level = int(2**n_bit)
self.quantizer = "mid-rise"
elif quantizer == 1 or quantizer == "mid-tread":
self.level = int(2**n_bit) - 1
self.quantizer = "mid-tread"
else:
raise ValueError("quantizer {quantizer} is not supported")
[docs] def forward(self, y):
"""Dequantize input.
Parameters
----------
y : Tensor [shape=(...,)]
Quantized input.
Returns
-------
x : Tensor [shape=(...,)]
Dequantized input.
Examples
--------
>>> x = diffsptk.ramp(-4, 4)
>>> x
tensor([-4., -3., -2., -1., 0., 1., 2., 3., 4.])
>>> quantize = diffsptk.UniformQuantization(4, 2)
>>> dequantize = diffsptk.InverseUniformQuantization(4, 2)
>>> x2 = dequantize(quantize(x))
>>> x2
tensor([-3., -3., -1., -1., 1., 1., 3., 3., 3.])
"""
if self.quantizer == "mid-rise":
y = y - (self.level // 2 - 0.5)
elif self.quantizer == "mid-tread":
y = y - (self.level - 1) // 2
else:
raise RuntimeError
x = y * (2 * self.abs_max / self.level)
x = torch.clip(x, min=-self.abs_max, max=self.abs_max)
return x