Source code for diffsptk.core.b2mc

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import numpy as np
import torch
import torch.nn as nn

from ..misc.utils import numpy_to_torch


[docs]class MLSADigitalFilterCoefficientsToMelCepstrum(nn.Module): """See `this page <https://sp-nitech.github.io/sptk/latest/main/b2mc.html>`_ for details. Parameters ---------- cep_order : int >= 0 [scalar] Order of cepstrum, :math:`M`. alpha : float [-1 < alpha < 1] Frequency warping factor, :math:`\\alpha`. """ def __init__(self, cep_order, alpha): super(MLSADigitalFilterCoefficientsToMelCepstrum, self).__init__() assert 0 <= cep_order assert abs(alpha) < 1 # Make transform matrix. A = np.eye(cep_order + 1) np.fill_diagonal(A[:, 1:], alpha) self.register_buffer("A", numpy_to_torch(A.T))
[docs] def forward(self, b): """Convert MLSA filter coefficients to mel-cepstrum. Parameters ---------- b : Tensor [shape=(..., M+1)] MLSA filter coefficients. Returns ------- mc : Tensor [shape=(..., M+1)] Mel-cepstral coefficients. Examples -------- >>> b = diffsptk.ramp(4) >>> mc2b = diffsptk.MelCepstrumToMLSADigitalFilterCoefficients(4, 0.3) >>> b2mc = diffsptk.MLSADigitalFilterCoefficientsToMelCepstrum(4, 0.3) >>> b2 = mc2b(b2mc(b)) >>> b2 tensor([0.0000, 1.0000, 2.0000, 3.0000, 4.0000]) """ mc = torch.matmul(b, self.A) return mc