Source code for diffsptk.core.spec

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
import torch.nn as nn


[docs]class Spectrum(nn.Module): """See `this page <https://sp-nitech.github.io/sptk/latest/main/spec.html>`_ for details. Parameters ---------- fft_length : int >= 2 [scalar] Number of FFT bins, :math:`L`. out_format : ['db', 'log-magnitude', 'magnitude', 'power'] Output format. eps : float >= 0 [scalar] A small value added to power spectrum. """ def __init__(self, fft_length, out_format="power", eps=0): super(Spectrum, self).__init__() self.fft_length = fft_length self.eps = eps assert 2 <= self.fft_length assert 0 <= self.eps if out_format == 0 or out_format == "db": self.convert = lambda x: 10 * torch.log10(x) elif out_format == 1 or out_format == "log-magnitude": self.convert = lambda x: 0.5 * torch.log(x) elif out_format == 2 or out_format == "magnitude": self.convert = lambda x: torch.sqrt(x) elif out_format == 3 or out_format == "power": self.convert = lambda x: x else: raise ValueError(f"out_format {out_format} is not supported")
[docs] def forward(self, b, a=None): """Convert waveform to spectrum. Parameters ---------- b : Tensor [shape=(..., M+1)] Framed waveform or numerator coefficients. a : Tensor [shape=(..., N+1)] Denominator coefficients. Returns ------- y : Tensor [shape=(..., L/2+1)] Spectrum. Examples -------- >>> x = diffsptk.ramp(1, 3) >>> x tensor([1., 2., 3.]) >>> spec = diffsptk.Spectrum(fft_length=8) >>> y = spec(x) >>> y tensor([36.0000, 25.3137, 8.0000, 2.6863, 4.0000]) """ X = torch.abs(torch.fft.rfft(b, n=self.fft_length)) if a is not None: K, a1 = torch.split(a, [1, a.size(-1) - 1], dim=-1) a = torch.cat((K * 0 + 1, a1), dim=-1) X /= torch.abs(torch.fft.rfft(a, n=self.fft_length)) X *= K y = torch.square(X) + self.eps y = self.convert(y) return y