Source code for diffsptk.core.dct
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import numpy as np
import torch
import torch.nn as nn
from ..misc.utils import default_dtype
def make_dct_matrix(L):
W = np.empty((L, L), dtype=default_dtype())
n = (np.arange(L) + 0.5) * (np.pi / L)
c = np.sqrt(2 / L)
for k in range(L):
z = np.sqrt(1 / L) if k == 0 else c
W[:, k] = z * np.cos(k * n)
return W
[docs]class DiscreteCosineTransform(nn.Module):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/dct.html>`_
for details.
Parameters
----------
dct_length : int >= 1
DCT length, :math:`L`.
"""
def __init__(self, dct_length):
super(DiscreteCosineTransform, self).__init__()
assert 1 <= dct_length
W = make_dct_matrix(dct_length)
self.register_buffer("W", torch.from_numpy(W))
[docs] def forward(self, x):
"""Apply DCT to input.
Parameters
----------
x : Tensor [shape=(..., L)]
Input.
Returns
-------
y : Tensor [shape=(..., L)]
DCT output.
Examples
--------
>>> x = diffsptk.ramp(3)
>>> dct = diffsptk.DCT(4)
>>> y = dct(x)
>>> y
tensor([ 3.0000, -2.2304, 0.0000, -0.1585])
"""
y = torch.matmul(x, self.W)
return y