mgcep#

class diffsptk.MelCepstralAnalysis(cep_order, fft_length, alpha, n_iter=0)[source]#

See this page for details. Note that the current implementation does not use the efficient Toeplitz-plus-Hankel system solver.

Parameters
cep_orderint >= 0 [scalar]

Order of mel-cepstrum, \(M\).

fft_lengthint >= 2M [scalar]

Number of FFT bins, \(L\).

alphafloat [-1 < alpha < 1]

Frequency warping factor, \(\alpha\).

n_iterint >= 0 [scalar]

Number of iterations.

forward(x)[source]#

Estimate mel-cepstrum from spectrum.

Parameters
xTensor [shape=(…, L/2+1)]

Power spectrum.

Returns
mcTensor [shape=(…, M+1)]

Mel-cepstrum.

Examples

>>> x = diffsptk.ramp(19)
>>> stft = diffsptk.STFT(frame_length=10, frame_period=10, fft_length=16)
>>> mcep = diffsptk.MelCepstralAnalysis(3, 16, 0.1, n_iter=1)
>>> mc = mcep(stft(x))
>>> mc
tensor([[-0.8851,  0.7917, -0.1737,  0.0175],
        [-0.3522,  4.4222, -1.0882, -0.0511]])