lpc¶
- diffsptk.LPC¶
- class diffsptk.LinearPredictiveCodingAnalysis(acr_order, frame_length, out_format='K,a')[source]¶
- See this page for details. This module is a simple cascade of acorr and levdur. - Parameters
- acr_orderint >= 0 [scalar]
- Order of autocorrelation, \(M\). 
- frame_lengthint > M [scalar]
- Frame length, \(L\). 
- out_format[‘K’, ‘a’, ‘Ka’, ‘K,a’]
- K is gain and a is LPC coefficients. If this is Ka, the two output tensors are concatenated and return the tensor instead of the tuple. 
 
 - forward(x)[source]¶
- Perform LPC analysis. - Parameters
- xTensor [shape=(…, L)]
- Framed waveform 
 
- Returns
- aTensor or tuple[Tensor]
- Gain and/or LPC coefficients. 
 
 - Examples - >>> x = torch.nrand(5) tensor([ 0.8226, -0.0284, -0.5715, 0.2127, 0.1217]) >>> lpc = diffsptk.LPC(2, 5) >>> a = lpc(x) >>> a (tensor([0.8726]), tensor([0.1475, 0.5270]))